Containment in Convex Polytope using k-D Tree

Tobias Pietzsch
March 7, 2015

1 Introduction

The problem we want to solve is the following: Given a set of points x € R*
and a convex polytope in R¥, partition the set of points into those inside and
outside the polytope.

We assume that the points are stored in a k-D tree (formally defined below).
We start by deriving an algorithm that, given a hyperplane, partitions the set
of points into points in the positive and negative half-space of the hyperplane,
respectively. We then give an algorithm that, given a convex polytope (a set of
hyperplanes), partitions the set of points into points that are inside and outside
the polytope, respectively.

2 k-D Trees

We assume that the points are stored in a k-D tree which can be defined as
follows.

Definition 1 (binary point tree). We define the set of binary trees with points
x € R* stored in the nodes as

Te={L} U {(x,s,L,R) | x€R" 1<s<k, L,Re Ty}
where 1. denotes the empty tree and s is called the splitting dimension.

Definition 2 (min and max coordinate of a tree). Let T € T, and 1 < s < k.
We define the min coordinate in dimension d as

400 ifT=1

ming (T) = {min {a, ming (L) ,ming (R)} if T = (x,s,L, R).

We define the max coordinate in dimension d as

—00 ifT=1

e (1) = {max {za, maxq (L), maxq (R)} f T = (x,s,L, R),

where x; denotes the ith component of vector X.

Definition 3 (k-D tree). We define the set of k-D trees as

Tep ={L1} U {(x,s,L,R) € T, | max, (L) < x5 <ming (R), L,R € Typ}.

3 Sub-Tree Bounding Boxes

The algorithms presented in the following are all based on recursively visiting
the nodes of a k-D tree in a depth-first search. While doing this, we maintain
the bounding box of all coordinates in the sub-tree rooted in the visited node.
The recursion is given in Algorithm 1. We use x[i — y] to denote the vector x
with the ith component replaced by y.

Algorithm 1: Sub-tree bounding boxes.

Procedure wvisit ((X, s, L, R) , x™n xmax):

if L# 1 then
L visit (L,x™", x™[s 5 x,])

if R# 1 then
| wvisit (R, x™"[s >], x™)

It is easy to show that Vd,1 < d <k : maxg (T) < 2 Aming (T) > 2
is an invariant of the recursion in wvisit (T € Trp, X™" XM [g xs])

4 Splitting £-D Tree by a Hyperplane

Let P = (n,m) with n € R*¥,m € R denote a k-dimensional hyperplane. Point
x € R* is on the plane iff x - n = m; it is above the plane iff x - n > m; it is
below the plane iff x-n < m.

Consider a set X of points x € R¥. Let a bounding box of X be given by
(xmin,xmax) such that

Vx € X, Vd,1 <d<k : " <y < P

To determine whether all points in X lie above or below a hyperplane (n,m)
respectively, it is sufficient to check the bounding box corner that is furthest
along the negative or positive direcction of the normal n. This is formalized in
functions allAbove and allBelow in Algorithm 2.

Algorithm 2: Bounding box above or below plane.

Function allAbove (x™", x™** (n,m)) : beB

xfi“i" ifng>0

x:=(T1,...,&pn), Tq =)
P ifng <0

return x-n>m

Function allBelow (xmi“, x™max (p m)) :beB

min if <0
X :=(X1,...,Tpn), Tg= a ?nd
P ifng >0

return x-n<m

It is easy to show that

e if allAbove (xmi“, x™Mex (n, m)) = true then all points in the bounding box
(xmi“,xma") are above the plane, and

e if allBelow (xmin, XM (p m)) = true then all points in the bounding box
(xmin,xmax) are below the plane.

Given these functions we can devise an algorithm that partitions points in a
k-D tree T = (x,s,L, R) € Txp into sets A (points above the hyperplane) and
B (points below the hyperplane) as follows: Check whether x is above or below
the hyperplane and add it to A or B accordingly. Determine bounding boxes for
L and R as in Algorithm 1 and test whether these are allAbove or allBelow the
hyperplane. If so, add all points in sub-trees L and R to A or B, respectively.
Otherwise recursively descent into L and R.

This computation can be made more efficient by eliminating certain checks
for L and R. For example, assume that x is above the hyperplane. Further
assume that ng > 0. Because we recursively descended into T', we already know
that the bounding box of T" is not allAbove the hyperplane. This means that the
bounding box corner furthest to the negative normal direction is not above the
hyperplane. Now, the bounding box for L only differs from the bounding box
of T in that x** = z,. Because ns > 0, the bounding box corner of L furthest
to the negative normal direction will have sth component equal to #™®. This
means that the bounding box corner furthest to the negative normal direction
for L has the same coordinates as that for T". Therefore, we already know that
L is not allAbove the hyperplane. Consequently we can eliminate the aboveAll
check for L and recursively descent immediately. Similar considerations can be
made for other combinations of sign of ns; and L or R.

The resulting algorithm is given in Algorithm 3, where we use all (T) to
denote the set of all points in the sub-tree T

5 Splitting k-D tree into Inside and Outside of a
Convex Polytope

Now assume that we are given a convex polytope C = {Pi,... P,} defined by
hyperplanes P; = (ni, mi) such that points x € R” are inside C if they are above
all hyperplanes P; and outside C otherwise. We want to partition points in a
k-D tree T = (x,s,L, R) € Trp into sets A and B of points inside and outside
the polytope, respectively.

Using the same reasoning as in Section 4 we can devise an algorithm that
partitions points in a k-D tree T' = (x, s, L, R) € Tgp into sets A (points inside
the polytope) and B (points outside the polytope) as follows: Check whether x
is above all hyperplanes P;. If so, add x to A, otherwise add it to B. Determine
bounding boxes for L and R as in Algorithm 1, and test whether these are
allAbove and allBelow all hyperplanes P;. If the bounding box for L (or R) is
above all of the hyperplanes P;, add all points in the sub-tree L (or R) to set
A. If the bounding box for L (or R) is below a single one of the hyperplanes P;,
add all points in the sub-tree L (or R) to set B. Otherwise recursively descent
into L and R.

Algorithm 3: Split k-D tree points on hyperplane. Given a k-D tree and a
hyperplane, the function split computes a partition of the points in the tree
into sets A and B of point above and below the hyperplane, respectively.

Function

split ((x, s, L, R),x™in xmax (n m)) : (A,B)eP (Rk) x P (Rk)
p:=x-n>m // set p if x is above hyperplane
gt :=n, <0 // set ¢* if n points towards left child
g% :=ns >0 // set ¢% if n points towards right child
// handle x
if p then
| (A, B) = ({x},9)
else

L (A4, B):= (@,{X})

// handle left child
(A, B) := (A, B) U splitSubtree (L,x™", x™*[s — z,], (n,m) , p, ¢")

// handle right child
(A, B) := (A, B) U splitSubtree (R, x™"[s — x,], x™*, (n,m),p, ¢)

return (A, B)

Function splitSubtree (T, xmin xmax p g, q) : (A,B)eP (Rk) X P (Rk)
if p A g A allAbove (xmi“7 xmax, P) then
| return (all(T),2)
else if —p A =g A allBelow (x™,x™*, P) then
| return (&, all(T))
else
L return split (T, x™", x™* P)

We can make the following considerations to make the computation more
efficient:

e Certain checks for individual hyperplanes can be eliminated by the same
reasoning as in Section 4.

e If a sub-tree is allBelow a single hyperplane, we can stop checking further
hyperplanes. The recursion can be terminated and the whole sub-tree can
be added to the outside set B.

e If a sub-tree is allAbove a given hyperplane, all sub-trees further down
the recursion will be allAbove this hyperplane as well. Consequently, that
hyperplane can be removed from the set of hyperplanes to consider for this
branch of the recursion. If in this process the set of hyperplanes becomes
empty, recursion can be terminated and the whole sub-tree can be added
to the inside set A.

The resulting algorithm is given in Algorithm 4, where P; = (ni, mi) and
we use all (T') to denote the set of all points in the sub-tree T

Algorithm 4: Partition k-D tree points into interior and exterior of a
polytope. Given a k-D tree and a convex polytope, the function clip com-
putes a partition of the points in the tree into sets A and B of point inside
and outside the polytope, respectively.
Function
clip ((x, s, L, R) ,x™in xmax [p Ph}) : (A,B)eP (Rk) x P (Rk)
foreach 1 <i < h do
pii=x-n'>m’ // set p; if x is above hyperplane P;
gl :=ni <0 // set gF if n’ points towards left child
gt :=ni>0 // set ¢f' if n' points towards right child

Qo
|
—
)
I
()
>
~

// handle x

if A\, p; then

| (4.B) = ({x},2)
else

L (A, B):= (@,{X})

// handle left child
(A,B) :=(A,B)U
clipSubtree (L,x™™, x™[s i z,],p,q", {P1,..., P,})

// handle right child
(4, B) = (4,B) U
clipSubtree (R, xMin[g 1 2], x™8* p g {Py,. .. ,Ph})

| return (4, B)
Function
clipSubtree (T, xmin ymax g {Py,..., Ph}) : (A,B)eP (Rk) x P (Rk)
P = {Pl,...,Ph}
foreach 1 <i < h do
if p; A q; A allAbove (xmi“, xmax, Pi) then
| P=P\{P) |
else if —p; A —=q; N allBelow (xmm,xmax, P,») then
| return (@, all(T))

if P = @ then
| return (all(T), @)
else

L return Cllp (T,)(Hlin7 Xrnax’ 73)

6 Source Code

Implementations of the algorithms discussed above are provided in ImgLib2 [1].

The split algorithm for splitting a k-D tree by a hyperplane is implemented in
net.imglib2.algorithm.kdtree.SplitHyperPlaneKDTree (github link). The

clip algorithm for splitting a k-D tree into inside and outside of a convex poly-

tope is implemented in net.imglib2.algorithm.kdtree.ClipConvexPolytopeKDTree
(github link).

References
[1] Tobias Pietzsch, Stephan Preibisch, Pavel Tomancak, and Stephan Saalfeld.

ImgLib2—generic image processing in Java. Bioinformatics, 28(22):3009—
3011, 2012.

https://github.com/imglib/imglib2-algorithm/blob/master/src/main/java/net/imglib2/algorithm/kdtree/SplitHyperPlaneKDTree.java
https://github.com/imglib/imglib2-algorithm/blob/master/src/main/java/net/imglib2/algorithm/kdtree/ClipConvexPolytopeKDTree.java
https://github.com/imglib/imglib2-algorithm/blob/master/src/main/java/net/imglib2/algorithm/kdtree/ClipConvexPolytopeKDTree.java

	Introduction
	k-D Trees
	Sub-Tree Bounding Boxes
	Splitting k-D Tree by a Hyperplane
	Splitting k-D tree into Inside and Outside of a Convex Polytope
	Source Code

